Irreducibility of Tensor Squares, Symmetric Squares and Alternating Squares
نویسندگان
چکیده
We investigate the question when the tensor square, the alternating square, or the symmetric square of an absolutely irreducible projective representation V of an almost simple group G is again irreducible. The knowledge of such representations is of importance in the description of the maximal subgroups of simple classical groups of Lie type. We show that if G is of Lie type in odd characteristic, either V is a Weil representation of a symplectic or unitary group, or G is one of a finite number of exceptions. For G in even characteristic, we derive upper bounds for the dimension of V which are close to the minimal possible dimension of nontrivial irreducible representations. Our results are complete in the case of complex representations. We will also answer a question of B. H. Gross about finite subgroups of complex Lie groups G that act irreducibly on all fundamental representations of G.
منابع مشابه
Iterative Methods for Symmetric Outer Product Tensor Decomposition
We study the symmetric outer product for tensors. Specifically, we look at decomposition of fully (partially) symmetric tensor into a sum of rank-one fully (partially) symmetric tensors. We present an iterative technique for the third-order partially symmetric tensor and fourthorder fully and partially symmetric tensor. We included several numerical examples which indicate a faster convergence ...
متن کاملSome Convergence Results on the Regularized Alternating Least-Squares Method for Tensor Decomposition
We study the convergence of the Regularized Alternating Least-Squares algorithm for tensor decompositions. As a main result, we have shown that given the existence of critical points of the Alternating Least-Squares method, the limit points of the converging subsequences of the RALS are the critical points of the least squares cost functional. Some numerical examples indicate a faster convergen...
متن کاملSPALS: Fast Alternating Least Squares via Implicit Leverage Scores Sampling
Tensor CANDECOMP/PARAFAC (CP) decomposition is a powerful but computationally challenging tool in modern data analytics. In this paper, we show ways of sampling intermediate steps of alternating minimization algorithms for computing low rank tensor CP decompositions, leading to the sparse alternating least squares (SPALS) method. Specifically, we sample the Khatri-Rao product, which arises as a...
متن کاملSvd-based Algorithms for the Best Rank-1 Approximation of a Symmetric Tensor
This paper revisits this problem of finding the best rank-1 approximation to a symmetric tensor and makes three contributions. First, in contrast to the many long and lingering arguments in the literature, it offers a straightforward justification that generically the best rank-1 approximation to a symmetric tensor is symmetric. Second, in contrast to the typical workhorse in the practice for t...
متن کاملTensor-Based Multiuser Detection for Uplink DS-CDMA Systems with Cooperative Diversity
In the present paper, a semi-blind receiver for a multiuser uplink DS-CDMA (Direct-Sequence Code-Division Multiple-Access) system based on relay aided cooperative communications is proposed. For the received signal, a quadrilinear Parallel Factor (PARAFAC) tensor decomposition is adopted, such that the proposed receiver can semi-blindly estimate the transmitted symbols, channel gains and spatia...
متن کامل